

B87 Validation and Implementation of Y-PlexTM 6 for Forensic Casework

Carll Ladd, PhD*, Heather Miller Coyle, PhD, Eric J. Carita, BS, Michael T. Bourke, PhD, Nicholas CS Yang, MS, Christine M. Roy, MS, Jennifer L. Hintz, MS, Suzanne M. Neylon, MS, Timothy M. Palmbach, MS, JD, and Henry C. Lee, PhD, Connecticut Department of Public Safety, Division of Scientific Services, Forensic Science Laboratory, 278 Colony Street, Meriden, CT

The goal of this presentation is to discuss the validation of the Y-PLEX™6 (ReliaGene Technologies, Inc.) and its implementation for forensic casework.

Many sexual assault cases require the testing of intimate samples that are a mixture of male and female body fluids. In some cases, only the female profile is detected using standard autosomal STR systems even when sperm/semen are identified.

A Y-chromosome STR system significantly overcomes the problems associated with large female to male DNA ratios that can lead to poor/no amplification of the perpetrator's DNA. The ability to selec- tively target the male contributor(s) can be a substantial tool for the DNA analyst in these cases.

ReliaGene Technologies, Inc., has developed a multiplexed Y-chromosome STR system (Y-PLEX™6). This system amplifies 6 Y-STR markers (DYS393, DYS19, DYS389, DYS390, DYS391, and DYS385) in a single multiplexed reaction.

DNA from blood samples (CT Sex Offender Database) was extracted using the QIAmp Blood Kit (QIAGEN). The extracts were quantitated using the QuantiBlot Kit (Applied Biosystems, Inc.). Optimally, ~1 ng of DNA was amplified for 30 cycles according to the manufacture's protocols. The amplification reaction (total volume 25 ul) consisted of DNA (50pg->100ng), 5.0 ul of primer set mix (ReliaGene Technologies, Inc.), and 0.5 ul of AmpliTag Gold (Applied Biosystems, Inc.). Reducing the reaction volume by 1/2 did not significantly affect the performance of the kit. The addition of BSA (1 ul of 1.6 mg/ml) improved the amplification efficiency of many field samples, especially mixtures. BSA was generally not necessary for the amplification of known samples. Amplifications were performed using standard thermo- cylers (Applied Biosystems, Inc., models 2400 and 9700). The amplified products were separated on a 377 DNA Sequencer (Applied Biosystems, Inc) and analyzed using Genescan and Genotyper software. A custom Genotyper macro is supplied with the Y-PLEX[™]6 kit.

-t- the discrimination nowar of the V_PI FX™6 STR

DVS 19	12	1	0.41
01313	12	22	0.41
	13	144	59.26
	14.2	144	0.41
	14.2	43	17.70
	15	45	9.64
	10	10	4.12
	17	243	100.00
DYS 389	27	3	1.23
	28	38	15.64
	29	104	42.80
	30	70	28.81
	31	19	7.82
	32	9	3.70
		243	100.00
DVS 390	21	2	0.82
	22	30	12.35
	23	68	27.98
	24	100	41.15
	25	41	16.87
	26	2	0.87
	20	243	100.00
DVS 201	0	10	4.12
013 391	10	112	46.00
	10	112	40.09
	11	115	47.55
	12	2	2.06
	13	243	100.00
DYS 385	8	1	0.21
	10	5	1.03
	11	130	26.80
	12	35	7.22
	11,12,14	1	0.21
	13	42	8.66
	14	150	30.93
	15	51	10.52
	16	32	6.60
	17	20	4.12
	17.3	1	0.21
	18	11	2.27
	18.3	1	0.21
	19	4	0.82
	20	1	0.21
		495]	100.00

OF

13

TIMES

%

4.87

To evaluate the discrimination power of the Y-PLEX 6 STF
markers, a population database was generated for standard
Connecticut populations (Caucasian, African American, and
Hispanic). Overall, out of 787 males, 55% of the haplotypes (435)
were unique, with the most common haplotype detected in 32
males (4.10%). Within populations, 54%-74% of the haplotypes
were unique (African American-74%, Caucasian-65%, Hispanic-
54%). The most common haplotypes ranged from ~2%-6%
(African Americans-1.87%, Caucasians-6.17%, Hispanics-5.78%-
see tables below)

		12	124	50.10
(435)		13	134	50.19
(100)		14	89	33.33
2		15	29	10.86
-		16	1	0.37
bes		17	1	0.37
anic-			267	100.00
	DYS 19	12	0	0.00
700/		13	8	3.00
10%-		14	58	21.72
		14.2	0	0.00
		15	96	35.96
lowing		16	61	22.85
~ ~ ~		17	43	16,10
50		18	1	0.37
dation			267	100.00

AFRICAN AMERICAN

DYS393

ALLELE

12

The Y-PLEX[™]6 validation study also examined the fol issues: species specificity (common domestic animals (male females), reproducibility, the effects of environmental degradation,

sample mixtures, stutter, peak balance at DYS385, kit sensitivity, and nonprobative casework samples. These results along with the success of the method with casework samples are discussed.

Copyright 2004 by the AAFS. Unless stated otherwise, noncommercial photocopying of editorial published in this periodical is permitted by AAFS. Permission to reprint, publish, or otherwise reproduce such material in any form other than photocopying must be obtained by AAFS. * Presenting Author

HISPANIC

ALLELE

12

13

14

15

12 13

14

15

16

17

26

27 28

29

30

31

32

33

15/16

DYS393

DYS 19

DYS 389

DYS 389	27	5	1.87
	28	21	7.87
	29	53	19.85
	30	102	38.20
	31	63	23.60
	32	19	7.12
	33	4	1.50
		267	100.00
DYS 390	20	2	0.75
	21	156	58.43
	22	30	11.24
	23	21	7.87
	24	32	11.99
	25	23	8.61
	26	3	1.12
		267	100.00
DYS 391	9	10	3.75
	10	198	74.16
	11	59	22.10
	12	0	0.00
	13	0	0.00
		267	100
DYS 385	8	0	0.00
	10	2	0.37
	11	37	6.93
	12	9	1.69
	13	16	3.00
	13.2	1	0.19
	14	70	13.11
	15	76	14.23
	16	118	22.10
	17	115	21.54
	18	58	10.86
	19	26	4.87
	20	6	1.12
		534	100.00

OF TIMES

31

202

34

10

0

46

153

45

3

16

14 277

1

0 277

277

%

11.19

72.92

12.27

3.61

100.0

0.00

16.61

55.23

16.25

1.08

5.78

5.05

100.0

0.36

1.81 10.83

33.94

35.74

13.36

3.97

0.00

100.0

DYS 390	20	1	0.36
	21	37	13.36
	22	33	11.91
	23	59	21.30
	24	121	43.68
	25	24	8.66
	26	1	0.36
	27	1	0.36
		277	100.0
DYS 391	8	1	0.36
	9	30	10.83
	10	145	52.35
	11	97	35.02
	12	4	1.44
		277	100.0
DYS 385	8	0	0.00
	10	5	0.90
	11	100	18.05
	12	28	5.05
	13	90	16.25
	14	146	26.35
	15	55	9.93
	16	44	7.94
	17	33	5.96
	18	39	7.04
	18.3	1	0.18
	19	11	1.99
	20	2	0.36
		554	100.0

1. Three band haplotype detected in one individual-considered a single allele for statistical purposes.

Most Common Haplotypes (Overall 787)

	DYS 393	DYS 19	DYS 389	DYS 390	DYS 391	DYS 385	%	N
1	13	14	29	24	11	11,14	4.10	32
2	13	14	29	23	11	11,14	2.16	17
3	13	13	30	24	9	13,14	1.91	15
4	13	14	30	24	11	11,14	1.52	12
5	13	14	29	24	10	11,14	1.40	11

Most Common Haplotypes (African American - 267)

						·		
DY	(S 393	DYS 19	DYS 389	DYS 390	DYS 391	DYS 385	%	N
1	13	15	31	21	10	16,171	.87	5
2	13	14	29	24	10	11,14	1.50	4
3	14	15	30	21	10	16,17	1.12	3
4	13	14	28	25	11	14	1.12	3
5	14	17	30	21	10	18	1.12	3

 $^{\bullet}3$ other haplotypes were detected three times each in CT African American males.

Most Common Haplotypes (Caucasian - 243)

Γ	OYS 393	DYS 19 D	YS 389 D	YS 390 DY	'S 391 D	YS 385	%	N	
1	13	14	29	24	11	11,14	6.17	15	
2	13	14	29	23	11	11,14	3.70	9	
3	13	14	29	24	10	11,14	1.65	4	
4	13	14	29	25	11	11,13	1.65	4	
5	13	15	29	24	11	11,15	1.23	3	
••5	**5 other haplotypes were detected three times each in CT Caucasian males.								

Most Common Haplotypes (Hispanic - 277)

DY	S 393	DYS 19	DYS 389	DYS 390	DYS 391	DYS 385	%	N
1	13	14	29	24	11	11,14	5.78	16
2	13	13	30	24	9	13,14	4.69	13
3	13	14	30	24	11	11,14	2.89	8
4	13	14	29	23	11	11,14	2.17	6
5	13	14	31	21	11	16,18	2.17	6

Y-PLEX 6, STRs, PCR

Copyright 2004 by the AAFS. Unless stated otherwise, noncommercial *photocopying* of editorial published in this periodical is permitted by AAFS. Permission to reprint, publish, or otherwise reproduce such material in any form other than photocopying must be obtained by AAFS. * *Presenting Author*