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After attending this presentation, attendees will learn one important form that an error rate can take and 

how to develop an uncertainty interval, derived from the Chebychev inequality, which can serve as an error 
rate for a measurement process. This presentation will impact the forensic science community by providing 
attendees a better position to qualify or cross-examine an expert with respect to this area. 

Since the Frye decision was superseded by Rule 702 of the Federal Rules of Evidence, as interpreted by 
the Daubert, General Electric, and Kuhmo Tire decisions (The Daubert Trilogy), it is no longer enough to show 
that basis for the admission of expert evidence in a judicial proceeding is that it is generally accepted in a 
relevant field of study. These Federal Rules of Evidence require that the evidence itself be reliable. In 
2009, the National Academy of Sciences issued a report, entitled Strengthening Forensic Science in the 
United States: A Path Forward (the NAS Report). It looked at the state of the art of forensic science and found 
that, in many respects, forensic science disciplines were wanting. 

One of the criteria that the court set forth in the Daubert Trilogy and discussed in the NAS Report is the 
(known or potential) error rate of the hypotheses or techniques being proffered. The concept of error rate 
causes consternation and confusion to both forensic practitioners and to the legal community. This presentation 
will impact the forensic science community by abating some of that confusion by: (a) defining in practical terms 
what an error rate is or can be; and (b) offering guidance to practitioners how to develop an error rate for 
techniques that they utilize. Thus, the impact to will be for practitioners to improve their own practice of forensic 
science and, by instilling this knowledge in the legal community, members of which can then ask appropriate 
questions, to make sure that forensic science practitioners do indeed treat error rate in a meaningful manner. 

The trial judge that must act as a “gatekeeper” to determine admissibility of expert testimony to the trier of 
fact on the basis of both: 
(a) the ability to assist the jury; and, (b) whether or not the information the expert intends to offer is indeed 
“scientific knowledge.” Daubert sets forth a non-inclusive list of criteria to be considered, among them, whether 
there is a “known or potential rate of error”, a concept from metrology: the science of measurement. 

Error rate is an appropriate term when one deals with, for example, a dichotomous classification, e.g., 
whether or not there is or is not a match between a suspect and a piece of evidence.1 Unfortunately, “error 
rate” is problematic when it comes to measuring things of forensic import, because it conflates error with 
measurement uncertainty, which is not “error” at all but, rather, a concept in metrology that reflects the fact that 
measurements are never without at least some variability.2 

While expert testimony must be grounded in science (for example, mechanisms of friction). Once the 
science is established then the admissibility of expert testimony revolves around things more quotidian (the 
actual measuring of the friction between a reference material and a given floor surface). In place of hypothesis 
testing and its associated errors, there is accuracy, standardization, and calibration issues. 

One tool that has been used for this purpose is a Confidence Interval (CI), which depends upon measures 
of the central tendency (typically, the Arithmetic Mean) and the dispersion (typically, the Standard 
Deviation). A CI is expressed as a range of values subject to a level of confidence in that range of values. 
For example, one can state that a tribometric test sequence determined that the friction between the floor 
and a reference surface was between 0.37 and 0.47 with 95% probability: 
P(0.37 ≤ µ ≤ 0.46) = 95%. The production of a CI requires the collection of data in a contextually-appropriate 
manner, the calculation of sample statistics, typically the mean and standard deviation, and from that, a 
calculation of the CI using straightforward and well-known formulae. CIs for single or small samples require 
that the underlying probability distribution follow a Normal (Gaussian) Distribution.3  Unfortunately, many 
forensically interesting phenomena are not Normally distributed.4 Parts one and two of this paper look at 
alternative ways of 
developing uncertainty estimates: 

1. The Chebychev inequality (discussed in this part of the paper). 
2. The sign-test derived confidence interval on the median (discussed in part 2). 
3. The uncertainty interval based upon the cumulative function (discussed in part 2). 
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1-The Chebychev Inequality: The Chebychev inequality, 
which requires no information about the underlying 
probability distribution other than its mean (µ) and a standard 
deviation (s), states that the probability of being farther than k 
standard deviations from the population mean is less than 
1/k : 

 
For example, the probability of being greater than two standard deviations from the mean is less than 

25%. 

This result is weak compared to the narrower confidence interval that can be arrived at given information 
about the underlying probability distribution. If the underlying probability distribution was normal, for example, 
the probability of being greater than two standard deviations from the mean is about 5%, one-fifth of the 
Chebychev-determined value. (See the graph above.) 

 
Example 1: The Chebychev Uncertainty Interval

 
The following data represents the time, in milliseconds, that it takes a laser rangefinder to stabilize its 

reading. Column one represents the stabilization time, rounded to the nearest millisecond, that the 
rangefinder takes to settle; column two represents the number of times that that particular reading is seen out 
of 55 readings. For example, the device took 2 ms to settle on two occasions and on eight occasions, it took 
13 ms to settle. The mean and standard deviation can easily be calculated in Excel to be 12.31 and 4.09 ms 
respectively.5 

Thus, 25% of the readings are within 12.31 ± 2x4.09 = 12.31 ± 8.18 
= (4.13, 20.49). 

If one is working with single samples or very small samples, as is often the case with forensic samples, 
and if there is historical instrument data from which to build a standard deviation, the Chebychev Inequality will 
enable one to develop an Uncertainty Interval (UI), albeit a rather wide one. 

Discussion: An instrument or process, absent an externally imposed rule or standard, cannot “pass” or 
“fail” an UI or a CI. Rather, and this is important, the utility or lack of utility is situational. A hypothetical 
floor-friction example illustrates this. In civil litigation, a plaintiff must prove that a floor is “slippery.” If the 
tribometer gave us a 95% CI or UI of the available friction as (0.35 ≤ µa ≤ 0.43) on the true 
coefficient of friction, i.e., it is 95% certain that the true value of floor 
friction is between 0.37 and 0.43, that in and of itself cannot determine whether the floor is or is not slippery. 
There must also be an external reference, a threshold: if the pedestrian-required friction is, say, µr=0.45, with 
values at or above 0.45 being slip resistant, and values below that slippery. If the high side of the CI or UI is, 
say, 0.43, the floor would be proven, within reasonable certainty, to be slippery. 

One might argue that a one-sided CI is more appropriate because we are only interested in one side of the 
error rate CI (or UI). In this friction- testing example, where the movant wants to prove that the friction is, 
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within reasonable certainty, below slipperiness threshold, one could argue that a one-sided, “high side” CI, 
better suits the task (if the high side of a 2-sided CI—or a 1-sided, high-side CI—is below the friction 
threshold, this will prove the slipperiness. Conversely, if the high side of the available-friction CI is above friction 
required by the pedestrian, then the floor cannot be proven to be slippery). A one-sided, upper CI would give a 
lower high side, making it easier to show that the floor was slippery. The more conventional two-sided CI is 
preferable because (a) the two-sided interval gives a larger interval on the side of interest (whether that’s 
the low or the high end), reflecting a larger uncertainty, making it harder for the movant to prove the slipperiness 
hypothesis, and is thus more conservative and, (b) the uncertainty of most processes is in fact better reflected by 
a two-sided UI. 
References: 

1. Dichotomous classifications, like this ‘match’ example, actually have two error rates: the probability of 
a false positive (that a match is mistaken) and the probability of a false negative (that a match will be 
missed). Daubert concerns itself with the former. 

2. Measurement Uncertainty is the parameter, associated with the result of a measurement (the 
measurand) that characterizes the dispersion of the values that could reasonably be attributed to that 
measured value. (Guide to the Expression of Uncertainty in Measurement, ISO, Geneva, 1993.) 

3. For the sample mean (the arithmetic average), the Central Limit Theorem states that as the sample size 
increases, the distribution of that mean rapidly converges to the Normal Distribution. Practically, if the 
underlying distribution of the values has a unimodal (one-hump) shape, the average of a sample of 
10 or more will converge to a normal distribution; Regardless of the distribution’s shape, the average 
of a sample of 30 or more will onverge to a Normally-distributed statistic. Unfortunately, many forensic 
analyses use single or very small samples, making the Central Limit Theorem inapplicable. 

4. The distribution of Perception-Reaction Time is log-normal; the distribution of the probability of an 
indicated slip on a Brungraber Mark II walkway friction tester is binomial, and the CF can be 
determined using Logistic Regression. (“The Relationship Between the Measured Friction Coefficient 
and the Safety of a Walkway Surface,” 2010 Proceedings of the American Academy of Forensic 
Sciences, Vol. 16, p. 159-160, Seattle, WA, and part 2 of this paper). 

5. In Excel, the formulae are =average(range) and =stdev(range) respectively, where range is the 
selection of the individual values. 
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