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After attending this presentation, attendees will be in a better position to qualify or cross-examine an 

expert with respect to this area. Error Rate is used as an indicator of the reliability of a scientific- hypothesis, 
technical test, procedure, or process, and is often required for admissibility of expert testimony. Technical 
attendees will learn two forms that an error rate can take and how to develop uncertainty intervals, derived 
from the Cumulative Function and from a confidence interval derived from a sign test on the median, which 
can serve to characterize the error rate for a measurement process. 

This presentation will impact the forensic science community by providing practitioners with the 
resources to improve their own practice of forensic science and, for the legal community, to give insight into how 
an uncertainty interval is developed. 

Rule 702 of the Federal Rules of Evidence require that the evidence in a forensic proceeding be reliable. 
One of the criteria that the court set forth in interpreting Rule 702 is the error rate of techniques being proffered. 
This paper will impact the forensic science community by 
offering two methods of determining an error rate. 

One classic metric of measurement uncertainty is the confidence interval on the mean (the arithmetic 
average), a function of that mean and the sample standard deviation, which connects the sample and the 
population using a Student’s-t probability distribution. 

This paper (and Part 1) together, looks at alternative ways of developing uncertainty estimates, which vary 
in their simplicity and their efficiency: 

1. The Chebychev inequality (discussed in part 1); 
2. The sign-test derived confidence interval on the median (discussed in this paper). 

3. The uncertainty interval based upon the cumulative function (discussed in this paper). 
Example 2: A confidence interval based upon the sign test on 

the median: This method requires only that the samples be independently drawn from the same continuous 
distribution; it makes no assumption concerning the form of that distribution. The sample values are placed in 
order from smallest to largest. For the laser-rangefinder- settling-time data used in example 1, rearranged in 
ordinal, rather than tabular form, the results obtained are: 
4, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 
13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 16, 17, 18, 20, 20, 22, and 25. 

Without going into theory, the confidence interval rests upon the assumption that the median lies either 
(a) before the first point (4) or after the last point (25), (b) between the first and second data points (4 & 
7) or between the next-to-last and last data points (22 & 25), (c) between the second and third data points (7 & 8) 
or the third-from-last and-second from last data points (20 & 22) or (d) between the third and fourth 

The widest possible confidence interval, (4, 25) fails to capture the median only if the true median is less 
than four or greater than 25; the next widest confidence interval (7, 22) fails to capture the true median only if 
it is not within the data range (except for the end points). The probability calculation turns put to be binomial 
with p(success) = ½. Thus, the confidence level for a confidence interval that extends k points from the extreme 
values of the data set is: 
1 - (2 x b(k; n, ½)), where 
b(k; n, ½) is the binomial distribution probability of k successes in n trials with a probability of success at 
each trial of ½.1 The upper limit results only show: 
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Discussion of the sign-test-based confidence 
Interval: One thing is clear: one cannot in general specify 
a specific confidence level, e.g., 95%, because the 
confidence interval is based upon discrete data points. 
(Here, you can get near that 95% value: The 95.3% 
confidence interval is between 13 and 21 milliseconds; 
the 92.8% confidence interval is 
between 13 and 22 milliseconds.) This discreteness is a 
function of the discrete nature of the underlying 
(binomial) distribution, which has non- zero probability 
only at the integers. That said, (a) this confidence 
interval is exact and not subject to any limitations on 
the underlying distribution; and, (b) only tradition lies 
behind using 95% confidence limits, or any other 
specific confidence level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 3a: An Uncertainty Interval From Raw Data 
 

The data here relates to the same 55 observations2 of the time 
(in milliseconds) to stabilize a laser rangefinder. The first column is 
the millisecond value; the second column is the number of readings (of 
the 
55) in each millisecond “bin”; the third column is the cumulative number 
of occurrences, and fourth column is the cumulative frequency. More 
specifically, Col. (1) represents time in milliseconds, and is graphed on 
the x-axis. The x-values, here, represent how many milliseconds it 
takes to stabilize the rangefinder, rounded to the nearest second. The 
values in column one are from a continuous distribution, e.g., a 
value of four seconds is recorded for any actual value: 3.5 < t ≤ 4.5 
(the shaded row is an example within an example, with x = 4.) Col. 
(2) represents the number of occurrences: How many observations, 
out of the 55, does the settling time take on the value x, e.g., for x = four 
seconds, one value out of the 55 values is recorded. Col. (3) 
represents the cumulative number of occurrences: How many times in 
the experiment was a value of x or fewer seconds recorded. On the x 
= 4 line, the four-or-fewer seconds occurred three times (none for 0 
seconds, none for one second, twice for two seconds, none for three 
seconds, and once for four seconds. The shaded portion of col. (2) 
contains these values.) Col. (4) represents the Cumulative frequency: 
and is graphed on the y-axis. Col. 4 is but Col. 3 divided by 55, the 
sample size, expressing the cumulative results in column three, as a 
decimal. For the shaded row, representing four or 
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fewer seconds (actually a time of 4.5 seconds or less), there are three or fewer occurrences, giving a cumulative 
frequency of 5%. 

Graphing the first column as the independent variable on the x-axis and the fourth column as the 
dependent variable on the y-axis, and drawing lines horizontally from the 5% and 95% ordinate values to the 
CF, and then down to the x-axis, the 90% CI is seen for the stabilization time for the laser rangefinder ranges 
from 4 to 19.6 milliseconds. (This can, of course, also be seen on the chart, just above.) 

 

Example 3b: The confidence interval from a regression- developed cumulative function: The 
following diagram illustrates the uncertainty interval from the cumulative function by depicting two logistic 
regressions, developed from real data collected using a novel tribometric device: 

Here, two datasets are compared by comparing the two curves, again drawing horizontals at 5% and 
95% probabilities. Where each of the two horizontal lines cross the CFs, verticals have been drawn down to the 
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x-axis. For the leftmost, shallower-sloping curve, the P(slip) = 5% is 2.25° away from the 5.4°, the median 
value. The P(Slip) = 95% is 2.38° from the median. Thus, the 90% CI can be expressed as (2.15°, 7.78°). 
Similarly, the rightmost logistics regression curve yields the CI: 8.5°± 0.7°. Obviously the rightmost curve 
represents an over three times more accurate instrument-and-process than the leftmost curve. 

Discussion of the Cumulative Funtion methodology: Given the analysis, above, it appears that 
measurement uncertainty-the metrological equivalent of “error rate” in categorical classification-can be 
reasonably characterized by the methodology above. Moreover, by drawing the horizontals across at different 
ordinal values, we can obtain other CIs. For example, drawing horizontals at 25% and 75%, we obtain a 50% CI; 
by drawing across at 2½% and 97½%, we obtain the commonly-used 95% CI. 

This is not a a true confidence interval, meeting the definition: 

 
, where L and L are lower and upper bounds, respectively, and (1-〈) is the level of confidence, i.e., 
the probability that the true parameter lies between the lower and upper limits. There is no ‘true 
parameter’ coming into the analysis. This is not really a legal handicap, as none of the error rate 

explications require a confidence interval. Rather, what is described here is an uncertainty interval. 
Discussion—General: The techniques developed in this paper provide tools to meet the error-rate 

criterion of Daubert. 
An appropriate experimental design under which data is collected is essential to prevent the parameter 

under analysis from being confounded by some unanticipated factor. Given an appropriate experimental design, 
more data provides more reliable results than less. 

The methodologies described above should allow forensic practitioners to estimate their own 
processes’ or tests’ uncertainty via calculation of the error rate expressed as a CI or UI. This is one valuable 
component of meeting the requirements of Federal Rule of Evidence 702 as explicated by the Daubert Trilogy. 
Accomplishing a data-specific error rate will make your tests and analyses better able to withstand 
scrutiny. Familiarity with the general principles described above will assist those in the legal community in 
proffering competent (or rejecting problematic) technical evidence. 
References: 

1.  The formula for calculating the binomial probability of x successes in n trials with p(success) 
= ½ is =binomdist(x, n, ½) 

The mathematical formula is: 1.

 
2. While the appropriate sample size always depends upon the characteristics of that which is 

being characterized, a sample size of 55, is in our opinion, on the small side of reasonable for 
developing Daubert –purposed Confidence Intervals. 
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