

Digital & Multimedia Sciences
Section - 2014

Copyright 2014 by the AAFS. Unless stated otherwise, noncommercial photocopying of editorial published in this
periodical is permitted by AAFS. Permission to reprint, publish, or otherwise reproduce such material in any form
other than photocopying must be obtained by AAFS. * Presenting Author

B8 Kernel Pool Monitoring to Support Malware Forensics in a Cloud
Computing Environment

Golden G. Richard III, PhD, University of New Orleans, Dept of Computer Science, New Orleans, LA 70148;
and Irfan Ahmed, PhD*, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148

After attending this presentation, attendees will understand the internals of dynamic memory
allocations (a.k.a. kernel pools) in Microsoft® (MS®) Windows® and how virtual machine introspection can be
used to monitor the pools in a cloud-computing environment for detecting malware infection. Malware
typically modifies function pointers to redirect the control flow of the system to execute malicious code.
Tracing and identifying such stealthy hooks has significant importance in malware forensics. This
presentation particularly focuses on monitoring and logging any suspicious modification of function pointers
in the kernel pool to facilitate post-incident malware forensics.

This presentation will impact the forensic science community by discussing a method of monitoring
and logging suspicious modification of function pointers in kernel pools. The method is unique in that it
works on MS Windows® — a high priority target for malware developers, and only relies on the artifacts
residing in the physical memory of the target system to work. It is also the first system of its kind that allows
both 32- and 64-bit versions of the Windows® kernel to be monitored for function pointer integrity.

Microsoft® has introduced kernel patch protection or PatchGuard to protect kernel code and
important data structures such as the Interrupt Descriptor Table (IDT) that are typically targeted by
traditional malware. This has made it difficult for malware developers to exploit the code and data structures
protected by the PatchGuard. Thus, they look for low profile targets for exploitation in unexplored regions.
The kernel pool is one such region where, in particular, function pointers are targeted to execute malicious
code. There are numerous function pointers in the kernel pool, which provide an attractive opportunity for
an attacker to install stealthy hooks. State-of the art solutions perform static analysis of kernel source code
to obtain precise definitions of kernel data structures, which also identify the locations of function pointer
fields in the data structures. Moreover, they generate traversal graphs by linking pointers from one data
structure to another, which is then used to target the data structures in the physical memory of a target
system for integrity checking. Since the solutions require source code for the operating systems kernel, they
are generally not applicable to MS® Windows®. The seminal work of Yin et al. on MS® Windows® uses taint
analysis to learn about the definition of and contextual information for kernel data structures.1 However, it is
dependent on taint analysis for accuracy. The work is also dependent on the relocation table to track
function pointers in binary code. However, the relocation table does not contain entries to locate function
pointers in 64-bit Windows®, which limits the applicability of their work to 32-bit versions of Windows® only.

This study’s approach works in a virtualized environment and identifies function pointers that are
maliciously modified in a kernel pool. It runs in a privileged virtual machine and uses virtual machine
introspection to access the physical memory of a target Virtual Machine (VM) running MS® Windows®.
Since it runs outside the target VM, it is less prone to subversion if a target VM is compromised. It obtains
the list of function pointers directly from reliable sources in the physical memory of the target machine,
without relying on source code, disassembling the kernel binary, or traversing the relocation table. The
pointer list is then used to find the instances of function pointers in kernel pool data for integrity checking. It
does not require hooking to obtain the kernel pool data; instead, it uses kernel data structures maintained by
Windows® to track memory allocations to locate appropriate dynamic allocations in kernel pools. This study
has implemented the technique and details will be discussed in the presentation. Our experimental results
show that a small region in the kernel pool has a high concentration of function pointers, which is also non-
pageable, providing a rich reliable attack surface for exploitation. The implemented tool is able to perform
real-time monitoring of the region.
Reference:

1. H. Yin, P. Poosankam, S. Hanna, and D. Song, “HookScout: Proactive Binary-Centric Hook
Detection”, in Proceedings of the 7th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA’10), Bonn, Germany, 2010, pp. 1-20.

Cloud Computing, Integrity Checking, Kernel Pool

